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Abstract

This report is a sequel to [PB16], in which we provided a first progress report on research and
development towards a scalable, asynchronous many-task, in situ statistical analysis engine
using the Legion runtime system. This earlier work included a prototype implementation of
a proposed solution, using a proxy mini-application as a surrogate for a full-scale scientific
simulation code. The first scalability studies were conducted with the above on modestly-sized
experimental clusters.

In contrast, in the current work we have integrated our in situ analysis engines with a
full-size scientific application (S3D, using the Legion-SPMD model), and have conducted nu-
merical tests on the largest computational platform currently available for DOE science ap-
plications. We also provide details regarding the design and development of a light-weight
asynchronous collectives library. We describe how this library is utilized within our SPMD-
Legion S3D workflow, and compare the data aggregation technique deployed herein to the
approach taken within our previous work.
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1 Introduction

As we look ahead to next generation high performance computing platforms, the placement and
movement of data is becoming the key-limiting factor on both performance and energy efficiency.
Furthermore, the increased quantities of data the systems are capable of generating, in conjunction
with the insufficient rate of improvements in the supporting input/output (I/O) infrastructure, is
forcing applications away from the off-line post-processing of data towards techniques based on
in situ analysis and visualization. Together, these challenges are shaping how we will both design
and develop effective, performant and energy-efficient software. In particular, the challenges high-
light the need for data and data-centric operations to be fundamental in the reasoning about, and
optimization of, scientific workflows on extreme-scale architectures.

The DOE ASCR-funded project titled, “A Unified Data-Driven Approach for Programming In
Situ Analysis and Visualization” (UDDAP), seeks to understand the interplay between data-centric
programming model requirements at extreme-scale and the overall impact of those requirements
on the design, capabilities, flexibility, and implementation details for both applications and sup-
porting in situ infrastructure. The project leverages the Legion programming model and run-time
system [BTSA12], that was developed as part of the ExaCT co-design center. In this report, we
summarize recent research contributions from the Sandia sub-team of UDDAP project.

1.1 About this Work

This report extends the work of [PB16], in which we summarize research and development of
statistical analysis kernels for in situ deployment within the Legion run-time. We note that porting
the statistical analysis code from an MPI implementation into a Legion one was straightforward,
thanks in part to the initial design of our parallel statistics packages that separated computation
from communication, cf. [PTBM11], a design pattern which we discuss in detail below in §3.1.

The overall performance of the in situ system was evaluated on a number of small-size test beds
using a computational fluid dynamics (CFD) mini-application called MiniAero, cf. [FFL15]. This
implementation corresponded to a model first described in in [PB15], where we remarked that our
approach, based on aggregation regions as surrogates for bulk-synchronous collective operations,
was exhibiting optimal on-node parallel scaling, thereby taking advantage of the multiplicity of
cores on each node.

We extended these early results in a more systematic study [PBH+16], which both confirmed
our earlier encouraging results and also evinced that the additional overhead from the inclusion
of the statistics computations in situ would not become a bottleneck. This additional finding was
made possible by the instrumenting of the code using the Legion profiling tools, as illustrated in
Figure 1. One of the primary benefits of the approach presented was that only a small set of well
contained code was required to connect the analysis to the main simulation application. However,
given that the findings in these earlier reports did not stem from a full-scale scientific code, it
remained to be proven whether the nice portability features of our approach would extend to this
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Figure 1. Task scheduling timeline of in situ analysis in
MiniAero-Legion: Each row shows color-coded tasks running on
a different CPU core. Learn sub-tasks are displayed in light blue
color; other colors correspond to simulation tasks.

more complex setting.

1.2 Outline

This report briefly summarizes prior work, and presents an entirely new implementation of the
parallel descriptive analysis engine that:

1. uses a full-scale simulation code as the main application driver, and

2. employs a variant of the Legion programming model that scales to full-scale simulation runs.

Namely, we use S3D, a massively parallel DNS solver developed at Sandia National Laborato-
ries, cf.[HSSC05], for which a Legion implementation already exists and is routinely run on the
largest production platforms available at DOE. Notably, the implementation of S3D relies on the
SPMD (Single Program, Multiple Data) style of Legion, which is currently seen as a practical way
to achieve scalability, in particular for applications based on main tasks that exist throughout all or
most of the run. This style of Legion is based on dynamic collectives, i.e., non-blocking barriers
advanced on a specified number of arrivals. These dynamic collectives allow the developer to
define reduction objects1 when programming in the SMPD style of Legion, provided the desired
reduction operations be associative and commutative. We deploy our statistical analysis engine

1specifically, implemented as fold method of a dynamic collective.
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within an SPMD-Legion S3D workflow and compare this implementation with that of aggrega-
tions regions, which is better suited to the fully-hierarchical variant of the Legion run-time.

We begin by providing brief overviews of the Legion asynchronous many-task (AMT) pro-
gramming system and our parallel statistical analysis system design. We then summarize the ag-
gregation region-based statistical analysis engines, providing a brief summary of scalability results
up to 256 CPUs distributed across as many nodes. We follow this with a complete description of
the statistics engine written using the SPMD-Legion model along with a scalability study illustrat-
ing the efficacy of the approach. A key component of the SPMD-Legion in situ analytics work has
been the development of a light-weight asynchronous collectives library. We describe the library
herein, highlighting the potential for its impact across a wide variety of application use cases.

9



2 Background

2.1 Data-centric AMT Approach Benefits

In a conventional in situ framework, computer simulation programs and analysis code bases must
be explicitly connected, requiring manual data management and communication. Subsequent
changes in how analysis is done thus requires rewriting parts of the simulation, and vice-versa.
One of the key advantages of a data-centric AMT model is that it naturally supports composability
of simulation and analysis code bases, thereby reducing the entanglement of the application and
analysis codes to simply what data is being shared, and not when, where, or how this sharing is
to occur. Analysis tasks should therefore be much easier to incorporate into simulation code, and
re-usability by other codes should also be vastly improved.

In addition, the AMT approach provides performance portability in the face of increasing I/O
cost and variability. Different pieces of code will likely have different spatio-temporal character-
istics in terms of compute intensity, degree of parallelism, data access patterns, and task and data
inter-dependencies. The decoupling of the functional code from computation and data placement
allows an analysis code to easily be tuned for different machines or to be easily implemented within
either in situ or in transit frameworks.

Finally, a data-centric AMT approach provides an opportunity for the run-time to efficiently
co-schedule simulation and analysis tasks. It may be possible to incorporate the analysis workload
into available gaps in the execution of the simulation, whereas this scheduling requires significant
programmer effort (and is generally not performance-portable) in the MPI+X models, cf. [Gro09].
Dynamic load balancing provided by AMT models has the potential to allow for more graceful
handling of dynamic variability in analysis tasks and simulation.

2.2 The Legion Data-centric AMT Model and Run-time

Legion (cf. [BTSA12]) is an AMT model that makes data and data-centric operations first-class
programming constructs. A Legion application is decomposed into a task hierarchy, where tasks
declare which parts of the application data they will access or update. The Legion model separates
the functional description of the code (i.e., tasks and the data upon which they operate) from the
way in which it is mapped to a given machine (i.e., tasks and data placement). Application data is
contained in logical regions, which have neither an implied location within the memory hierarchy
of the machine nor a fixed physical layout.

The Legion run-time leverages these data properties to issue data movement operations as
needed, removing this burden from the developer. This run-time system detects pairs of tasks
that have a data dependence (i.e., they may access the same data and at least one is making non-
commutative modifications to it) and guarantees that the second task in the pair does not execute
until it is safe to do so. This technique extracts (dynamic) task parallelism from the applica-
tion, while preserving programmer-friendly “apparently-sequential” execution semantics. Legion
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run-time calls are thus deferred as needed, allowing the application code to issue tasks with depen-
dencies immediately.

In addition, this approach also allows for the dynamic execution of performance-related trans-
formations (e.g., the replication of read-only data to increase parallelism), perhaps differently on
different machines, without modifying the “machine-agnostic” functional description. Such run-
time transformations also have the potential to alleviate the risks of early optimization as well as the
many burdens of late-stage performance analysis that are commonplace in the bulk-synchronous
SMPD context.

Legion is designed for two classes of users: advanced application developers and domain-
specific (DSL) and library authors. It is therefore a natural candidate as an AMT run-time system
to support the requirements outlined in §1.

2.3 SPMD Parallel Statistics Toolkit

The prevalence of large, distributed data sets has lead to the development of statistical packages to
analyze them in parallel, cf. [WBS08, WTP+08, SME+09, PTBM11, Edd10, Sta10]. In [PTBM11]
we have presented a comprehensive view of the scalable, parallel statistical analysis library which
we designed and implemented and released as part of VTK. Without providing a comprehensive
view of this library, which would be beyond the scope of this report, we hereafter justify the choice
it as a first candidate for our research on AMT in-situ analysis using Legion.

The parallel statistics engines of VTK are a set of C++ classes, developed at Sandia National
Laboratories between 2008 and 2013, in particular by the authors of this report, based on SPMD
data parallelism using MPI. We therefore knew this tool kit very well before starting this study; we
knew in particular the limitations of the bulk-synchronicity when attempting to achieve extreme-
scale scalability. There was therefore a strong motivation to research other approaches, besides
SPMD, which would to allow for data analysis at scales orders of magnitude beyond what we were
able to achieve with MPI (optimal scalability with up to O(105) cores).

Figure 2. The 4 operations of statistical analysis and their interactions
with input observations and models. When an operation is not requested,
it is eliminated by connecting input to output ports.

The design decisions made during development were motivated by two primary factors:
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(i) We wanted to mimic the predominant types of data analysis work flows, so that a data analyst
using our framework would find it natural and intuitive to use.

(ii) The design had to be conducive to embarrassingly parallel implementations when possible.

In order to meet these two overlapping but not exactly congruent design requirements, we iso-
lated those parts of the analysis which by construction are not embarrassingly parallel (due to the
mathematics of the statistical analysis itself, not due to our design) so that parallel design trade-
offs be limited to those components where embarrassingly parallel implementations are not viable.
Specifically, the statistical analysis work flow is split into 4 disjoint operations:

• Learn a model from observations,

• Derive statistics from a model,

• Assess observations with a model, and

• Test a hypothesis.

These operations, when all are executed, occur in order as shown in Figure 2. However, it
is also possible to execute only a subset of these, for example when it is desired that previously
computed models, or models constructed with expert knowledge, be used in conjunction with
existing data. Note that in earlier publications, only the first 3 operations were mentioned; the Test
operation, which we initially saw as a part of Derive, was separated out afterwards for reasons both
theoretical (statistical hypothesis testing relies on assumptions not accepted by all statisticians) and
practical (second pass through the data might be necessary, as well as calls to outside libraries).
We therefore always considered the Test operation as an experimental feature, not implemented
for all statistics engines, and therefore we leave it aside for the current study.

From the parallelism standpoint, this subdivision of the work flow reduces the Learn operation
to a special case of the map-reduce pattern [DG04], while the remaining two are embarrassingly
parallel. Specifically, the Learn operation belongs to the map-reduce pattern in that the parallel
algorithm computes (maps) a set of distributed (key,value) pairs. All local values associated with
the same key are then merged by the reduce function to compute the global primary model. In
some of our statistical algorithms, namely moment-based, it is not necessary to communicate the
keys for there is a fixed number of them, identical across all processes, and these keys may be
ordered uniquely, so sending values alone is unambiguous.

In addition, the number of such keys is typically very small (less than 10), which allowed us
to implement the reduce function as an AllGather MPI collective, allowing each core to perform
locally all subsequent operations with no further communication. In contrast, for quanta-based
algorithms, tables with an arbitrary number of key-value pairs must be communicated and differ-
ent keys may be present on each process. We therefore implemented the reduce function using a
Gather-Broadcast two-step operation, involving a small number of reduction nodes on which this
procedure is performed, as illustrated in Figure 3 with a univariate analysis where the Learn oper-
ation builds a global histogram, along with derived statistics such as empirical PDF and quantiles.

12



Figure 3. A simplified example illustrating the operations of the
parallel order statistics; dashed red arrows indicate inter-process
communication. In terms of the map-reduce pattern, keys are the
raw observations (represented by letters a, b, c, d, e) and values are
the number of observations.

This can potentially cause problems as the size of the network increases to peta-scale, thereby
justifying the need to investigate asynchronous reduction strategies.

We conducted several systematic, multiple-parameter studies of the scalability properties of
our SPMD/MPI implementation with up to 105 cores on a tera-scale system, studying both weak
and strong scaling properties. Those tests demonstrated, in particular, that our design allowed
for optimal scalability of all moment-based engines, provided the input data sets were evenly
distributed across the system. Note that these studies purposefully ignored I/O and data movement
issues, using instead synthetic test data sets were generated on-the-fly by each process participating
in the experiment in order to isolate the analysis per se from other aspects that mostly depend on
the target platform. On the other hand, we established that for quanta-based statistics, our design
trade-offs (between efficiency and robustness) allows for optimal strong and weak scaling when
those statistical techniques are used in their appropriate context, namely, when the input data is not
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quasi-diffuse, but honestly represents discrete measurements. Furthermore, those parallel engines
have been successfully applied to the analysis of large-scale turbulent, reacting flow simulation
data [BGP+09].

2.4 Parallel Update Formulas

Central moments, including the variance, and derived quantities like skewness and kurtosis, are
some of the most widely used tools in descriptive statistics. However, standard approaches for
computing them either require two passes over the data, or are grossly inaccurate for data that
is not contained within a very limited range. This poses a problem in streaming settings where
incremental results are needed after each new value is observed, and for very large datasets, which
may not fit in available memory, and increasingly are distributed over a number of hosts.

In this setting the cost of distributed memory access is so large that two-pass algorithms become
entirely impractical. Even a single machine increasingly performs large parallel computations on a
Graphics Processing Unit (GPU), where memory bandwidth is a significant bottleneck. Using two
passes doubles the execution time, and using double precision arithmetic doubles it again, almost
irrespective of the number of arithmetic operations performed in each pass.

As the order of the moment increases, even the venerable two-pass algorithm may be inaccu-
rate, as the numerical error for evaluating polynomials around the mean grows exponentially with
the degree. When communication costs are the bottleneck, doubling the working precision doubles
the computation time. Alternatives, such as compensation algorithms for summation (cf.[ORO05])
and polynomial evaluation (cf.[LL07]), require twice as much storage for intermediate values. This
is not an issue when computations are performed locally, but for distributed computations this is
just as costly as doubling the working precision. A well-known correction factor, attributed in
[CGL83] to A. Björk, albeit also proposed by [Nee66], greatly improves the accuracy of the two-
pass algorithm when computing the variance. In [PTKB16] we generalized this correction factor
to moments of arbitrary order. Our scheme transmits only one additional value in the second pass,
but can correct for the error in moments of all orders, providing increased accuracy for higher order
moments at a fraction of the cost of generic compensation schemes. We provided numerical results
for most of these new formulas, including comparisons with other formulations and an application
to a scientific use case. In particular, we empirically observed that our generalized incremental
and pairwise algorithms perform almost as well as the two-pass algorithm, and in some cases even
better.

We now briefly recall the parallel update formulas that are relevant to the current study. For
details about these, please refer to [PTKB16]. For p a non-negative integer and using E [·] to denote
the expectation, the p-th central moment of a (univariate, real) random variable X is defined as

µp , E [(X−E[X ])p] , (2.1)

when the expectations exist (some random variables, e.g. those with a Cauchy distribution, do not
have an expectation). For a finite population of n equiprobable values in a multiset S = {xi}n

i=1,
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this reduces to

µp =
1
n

n

∑
i=1

(xi− x̄)p (2.2)

where x̄ , 1
n ∑

n
i=1 xi is the mean. Note that S has to be a multiset, not a set, in order to allow for

multiple copies of the same value.

The first central moment is exactly zero, and the second central moment is, by definition, the
variance: σ2 , µ2. We only consider the statistics of finite populations taken in their entirety, i.e.,
not sampled, to avoid issues of estimation bias. If S is instead just a finite sample of an infinite
population, one may obtain unbiased estimates of the moments of the whole population [Hal46].
However, unbiased estimates of the moments do not, in general, lead to unbiased estimates of
derived descriptive statistics such as standard deviation, skewness, and kurtosis.

Partitioning S into multisets A and B of respective sizes nA and nB and define µp,A , µp,B,
x̄A , and x̄B to be the corresponding statistic computed over each partition, we defined

δB,A , x̄B− x̄A ,

Mp , nµp ,

and again give MA
p and MB

p an equivalent definition restricted to each partition. We will find it
more convenient to work with these Mp quantities, or aggregates, rather than µp, though either
may be readily obtained from the other. With these notations, we derived the following pairwise
arbitrary-order and arbitrary set decomposition update formulas:

x̄ = x̄A +
nB

n
δB,A ,

and or any integer p≥ 2,

Mp = MA
p +MB

p +nA

(−nB

n
δB,A

)p
+nB

(nA

n
δB,A

)p

+
p−2

∑
k=1

(
p
k

)
δ

k
B,A

[
MA

p−k

(−nB

n

)k
+MB

p−k

(nA

n

)k
]
.

A number of commonly used statistics can be derived from the Mp aggregates such as, for
instance, the sample variance

σ
2
x =

M2

n
and the unbiased sample variance, cf. [DCD86]

s2
x =

M2

n−1
.

Higher-order aggregates allow for the computation of various skewness and kurtosis estimators,
such as, respectively:

g1 =
M3

ns3
x
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and
g2 =

M4

ns4
x
.

In our experiments we typically report kurtosis excess, g2− 3, rather than raw kurtosis, for the
kurtosis of a normal distribution is 3 which allows one to distinguish between platykurtic (thin
tails; kurtosis defect) and leptokurtic (fat tails; kurtosis excess) distributions.

2.5 Evaluation Criteria

In order to assess parallel scalability with our various programming models and implementations,
we used the following evaluation criteria:

1. Strong scaling, i.e., at constant total work, also known as relative speed-up. Denoting TN(p)
the wall clock time measured to execute the calculation, strong scaling is defined as:

SN(p) =
TN(1)
TN(p)

.

Some authors prefer to write the numerator as Ts rather than TN(1) to make it clear that the
parallel algorithm should be compared to the most efficient serial implementation available
and not just the parallel algorithm run on a single task.

Evidently, optimal (linear) scaling is attained when SN(p) = p and, therefore, strong scaling
results can be visually inspected by plotting SN versus the number of tasks: optimal scaling
is revealed by a line, the angle bisector of the first quadrant.

2. Weak scaling, i.e., at constant work per task, also known as rate of computation scalability.
The rate of computation is defined as:

r(p) =
N(p)

TN(p)(p)
,

where N(p) now varies with p. Weak scaling is then measured by normalizing the rate of
computation by that which is obtained with a single task. In particular, if the sample size is
made to vary in proportion to the number of tasks, i.e., if N(p) = pN(1), then

R(p) =
r(p)
r(1)

=
pTN(1)(1)
TpN(1)(p)

=
pTN(1)(1)
pTN(1)(p)

=
TN(1)(1)
TN(1)(p)

.

Therefore, optimal (linear) scaling is attained with p tasks when R(p) = p. Note that without
linear dependency between N and p, the latter equality no longer implies optimal scalability.

Parallel scalability can thus also be visually inspected by plotting the values of R versus the
number of tasks, and in this case also, optimality corresponds to the angle bisector of the
first quadrant.
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The information about time spent by each of the considered tasks can be extracted from the pro-
filing output of the Legion implementations, by means of the Python script called legion prof.py,
which comes with the distribution of Legion. This script parses the performance output that is gen-
erated when the appropriate option flags are passed to the executable through the command line.
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3 Parallel Statistics in Legion: Aggregation Regions Approach

We now explain the methodology which we used in order to re-formulate in an AMT context our
bulk-synchronous SMPD implementation of the Learn/Derive/Pattern. Retaining this flow of op-
erations is important because the original goal of meeting the predominant types of data analysis
work flows remain. Furthermore, as will be seen below, the decomposition of the analysis work-
flow into independent operations, isolating those parts that do not require global communication
from the others, allows for a natural and elegant transition to an AMT model.

3.1 Overview of the Aggregation Regions Approach

As described in §2, our SPMD models can take two different incarnations, depending on whether
the analysis pertains to moment-based or quanta-based statistics. In the former case, the imple-
mentation of the Learn phase relies on an AllGather MPI collective to reduce the distributed local
models into the global primary model whereas, in the latter case, this reduction uses a Gather-
Broadcast two-step process, for the sake of reducing inter-process communication as the size of
local models is not guaranteed to be negligible.

In the AMT model however, it is no longer necessary to express data movement explicitly as
is done in the SPMD model, for instance with the dashed red arrow in Figure 3. Considering
the same example for the sake of illustration, we can see that task parallelism can readily replace
the tasks performed by the distributed processes. Instead of specifying movement of data from
processes to a number of reduction nodes, it is instead sufficient to define a logical region of data
where the equivalent of MPI collectives will be performed. The separation of the logical from the
physical representation of data inherent to Legion makes it especially apt at supporting this purely
data-driven scheme, which should work, albeit maybe not efficiently, with any generic mapper.

Our proposed AMT algorithm for the Learn/Derive/Assess work flow therefore replaces com-
munication with a logical region that contains all model information, both primary and derived,
which we call the aggregation region. Sub-tasks launched by a top-level task pick up work on
those data segments to which they are assigned, in a similar manner to what is done by parallel
processes in the SPMD context, at least for the Learn and Assess phases. However, a first notice-
able difference is that no communication of data is expressed (even though it will occur under the
hood; how this happens is entirely the responsibility of the run-time system). Instead, each tasks
aggregates the primary statistics it has computed over its data segment, with those already stored
in the aggregation region, changing them in-place. As a result, no broadcast of the global primary
model is necessary, for all tasks using it (for instance, a new set of Assess sub-tasks) will directly
access the aggregation region to retrieve the values of the statistic. Moreover, the Derive operation
is now performed by the top-level task, for its results, also stored in the aggregation region, will be
also logically available to any Assess tasks launched from the top level. This asynchronous many-
task Learn/Derive/Assess scheme is represented in Figure 4, again for the case of order statistics.

Note that another benefit of this AMT model is that it allows us to unify the two SPMD imple-
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Figure 4. A simplified example illustrating the operations of
the task-based order statistics; solid blue arrows indicate task
launches, dashed red rectangles represent the logical aggregation
region. Sub-tasks of the top-level task are not obligated to com-
plete in this order, as both union and addition operators are com-
mutative.

mentations (AllGather and Gather-Broadcast) into a single paradigm, valid for both quanta-based
and moment-based statistics. Also, because all aggregation operations (set unions, number addi-
tions and multiplications) are commutative, the learned primary model is guaranteed to be inde-
pendent of the order in which tasks report their results. However strict locks must be enforced to
prevent incomplete model updates: once a task ti has read the values in the aggregation region, no
other task can access this region before ti has written its own results there.

For example, in the case of in situ descriptive statistics for MiniAero/Legion, the sub-tasks
(numbered 1, 2, and 3 in Figure 4) are implemented as a method templated on the type of the
Legion accessor used by the run-time to access data within a physical region. Legion pointers
do not directly reference data, but instead name an entry in an index space, and are used when
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accessing data within accessors for logical regions. In this setting, the accessor is specifically
associated with the field being accessed and the pointer names the row entry. Since pointers are
associated with index spaces they can be used with an accessor for a physical instance. In this
way Legion pointers are not tied to memory address spaces or physical instances, but instead can
be used to access data for any physical instance of a logical region created with an index space to
which the pointer belongs.

Given a Legion AccessorType, a concrete instance of the in situ statistics class provides an
implementation of the the Learn operation of the descriptive statistics engine. In this case, the
primary statistical model contains the following 8 quantities, stored in double precision: sample
size, minimum, maximum, mean, and centered M2, M3 and M4 aggregates as defined in §2.4. The
computation of the process-local model is done using the online versions of the respective update
formulas for the quantities above, whereas the aggregation with the global model is computed by
means of the pairwise versions, cf. [PTKB16] for details.

In turn, this Learn function is responsible for setting the Legion IndexLauncher that spawns
as many sub-tasks as requested. These operate on the partitioned input data and are executed by
the run-time, as illustrated by the blue arrows on top of Figure 4. The Learn function also creates
the Legion region requirements needed by the sub-task launcher; these are Legion objects used to
describe the logical regions requested by launcher objects. They also convey the privileges and
coherence that is requested on the specified logical region. In the case of a descriptive statistics
Learn task, two region requirements are needed: one for the input data to be read (and only read),
and the other for the output region where results are to be aggregated (and which therefore is
requires both read and write access).

In addition, the in situ statistics class provides an implementation of the Derive operation,
which is to be called only by the top-level task, for it needs only a single pass over the small set of
primary statistics in order to compute the derived statistics, as illustrated in Figure 4. Namely, for
descriptive statistics, these are the variance, standard deviation, skewness and kurtosis estimators.
This operation is de facto negligible for it involves a dozen arithmetic operations computer on a
single region, performed by a single task. Note that in this case the Legion region requirements
are a read-only access to the first field of the logical region used to store the statistical model, and
write permission for the second field of the same region.

We did not implement the Assess operation for the MiniAero/Legion experiment, for this study
was focused on validating the proposed AMT design: because the Assess phase is purely task-
local, it does not bring any additional information in this regard. It suffices to say here that the
Assess method of the in situ statistics class is to be launched in as many sub-tasks as necessary,
similarly to what is done for the Derive operation. For instance, in the case of descriptive statis-
tics, every Assess task will mark each datum of the data subset to which it is assigned with its
relative deviation with respect to the model mean and standard deviation (which amounts to the
one-dimensional Mahalanobis distance from the value predicted by a Gaussian model [Mah36]).
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3.2 In Situ Setting with MiniAero

We now discuss how the Legion version of MiniAero was interfaced with the in situ AMT statistics
code described above. This required the use of adaptor code which we kept as small as possible; as
this was a proof-of-concept implementation, it was not designed with consideration for genericity.

The first part of MiniAero/Legion to be modified is its TaskIDs.h file, whose enum TaskIds
defines one index for each task allowed to be created at run-time. Specifically, those added for the
sake of the in situ statistics are the following :

initialize_statistics_TID,
learn_statistics_TID,
derive_statistics_TID,
dump_statistics_TID,

which respectively identify the statistics initialization, learn, derive and print-out tasks. In addition,
the file main.cc must include the Statistics.h" header, so that its main routine may register the
tasks corresponding to the IDs listed above as follows:

MiniAero::Statistics::register_tasks();

We also modified the user interface of MiniAero/Legion in order to allow for the specification
of additional parameters in the command line arguments of the MiniAero executable. Specifically,
we added the 3 following instance variables to Interface.h:

bool descriptive_statistics;
int statistics_frequency;
int statistics_component;

to capture, respectively, whether the in situ statistics should be executed and, if so, how often and
for which variable amongst the 5 components of the MiniAero solution vector. Note that, at this
point, only one variable can be analyzed at a time, but this will be modified in subsequent versions.
Furthermore, the implementation of the user interface in Interface.cc was modified, first for the
constructor which now takes in 3 the additional parameters:

Interface::Interface()
: problem_type(0), num_blocks(0),
blocks_x(0), blocks_y(0), blocks_z(0),
interval_x(0), interval_y(0), interval_z(0),
mesh_scale(1.0), output_frequency(1), time_steps(1),
length_x(0.0), length_y(0.0), length_z(0.0),
ramp_angle(0.0), dt(0.0), wait(false), viscous(false),
second_order_space(false), output_results(false),
descriptive_statistics(false), statistics_frequency(1), statistics_component(0)
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with default values so that the analysis is not run unless the user explicitly so requests. The
enroll options() function is then modified by incorporating the 3 corresponding option set-
tings:

options_.enroll("descriptive_statistics",GetLongOption::NoValue,
"If specified, will compute in situ descriptive statistics.",
NULL);

options_.enroll("statistics_frequency",GetLongOption::MandatoryValue,
"Number of time steps after which a new statistical
analysis is performed.",
NULL);

options_.enroll("statistics_component",GetLongOption::MandatoryValue,
"Component of solution vector upon which a statistical
analysis is performed.",
NULL);

which are also added to the parsing method parse options() with, on one hand at the top of the
function:

descriptive_statistics = options_.retrieve("descriptive_statistics");

and, on the other hand at the bottom of the function:

{
const char *temp = options_.retrieve("statistics_frequency");
if (temp != NULL) {

statistics_frequency = std::strtol(temp, NULL, 10);
}

}

{
const char *temp = options_.retrieve("statistics_component");
if (temp != NULL) {

statistics_component = std::strtol(temp, NULL, 10);
}

}

following the format already in place for the existing interface options. Consequently, 3 new
optional command line arguments become available; for instance, the following:

-descriptive_statistics -statistics_frequency 20 -statistics_component 0

when passed to the MiniAero executable, results in the in situ analysis tasks being invoked (the
presence of -descriptive statistics results in the corresponding Boolean to become true)
every 20 time-steps, for the first component of the solution vector.
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The last part of MiniAero/Legion that requires adaptor code is toplevel.cc, which also must
include Statistics.h so it can instantiate a Statistics object. Prior to that, the interface op-
tions related to the in situ statistics must be retrieved, which is done as follows:

bool do_stats = interface.descriptive_statistics;
int stat_freq = interface.statistics_frequency;
int component = interface.statistics_component;

in a similar way as what is done for the other interface options. Subsequent versions of the AMT
statistics framework will design an interface with more options, modeled after those currently
offered by the VTK parallel statistics engines. The Statistics object is then instantiated as fol-
lows:

MiniAero::Statistics statistics(meshdata,ctx,runtime,mesh->num_blocks_,
task_wait_all_results,component);

which must be done somewhere before the driver time-loop. This is in fact similar to what is done
for the other main task objects of the Legion version of MiniAero (bc, solver, flux, etc.), and for
this reason we placed the Statistics instantiation immediately after all those already present in
toplevel.cc for these other objects. The aggregation regions defined in §3.1 must also be created,
which in this experimental implementation is done explicitly as follows for primary statistics:

Rect<1>
primary_stat_rect(Point<1>(0),Point<1>(MiniAero::Statistics::n_primary_stat-1));
IndexSpace primary_stat_is
= runtime->create_index_space(ctx,Domain::from_rect<1>(primary_stat_rect));

FieldSpace primary_stat_fs = runtime->create_field_space(ctx);
{
FieldAllocator allocator

= runtime->create_field_allocator(ctx,primary_stat_fs);
allocator.allocate_field(sizeof(double),MiniAero::Statistics::primary_stat_FID);

}
LogicalRegion primary_stat_lr
= runtime->create_logical_region(ctx,primary_stat_is,primary_stat_fs);
runtime->attach_name(primary_stat_lr, "primary_stat_lr");

and as follows for derived statistics:

Rect<1>
derived_stat_rect(Point<1>(0),Point<1>(MiniAero::Statistics::n_derived_stat-1));
IndexSpace derived_stat_is
= runtime->create_index_space(ctx,Domain::from_rect<1>(derived_stat_rect));

FieldSpace derived_stat_fs
= runtime->create_field_space(ctx);

{
FieldAllocator allocator

= runtime->create_field_allocator(ctx,derived_stat_fs);
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allocator.allocate_field(sizeof(double),MiniAero::Statistics::derived_stat_FID);
}
LogicalRegion derived_stat_lr
= runtime->create_logical_region(ctx,derived_stat_is,derived_stat_fs);
runtime->attach_name(derived_stat_lr, "derived_stat_lr");

which will then be passed explicitly to the statistics invocation methods, inside the time-loop:

if (do_stats && !(n_s % stat_freq)) {
statistics.initialize_statistics(primary_stat_lr);
statistics.learn_statistics(MeshData::solution_n,primary_stat_lr);
statistics.derive_statistics(primary_stat_lr,derived_stat_lr);
statistics.dump_statistics(primary_stat_lr,derived_stat_lr);

}

with the last call being optional, to be used only if a print-out of the computed statistics is sought.
This concludes the description of the adaptor code that is needed at the time of writing, and which
was used to test out the code.

3.3 Aggregation Regions Results

We also added timing and profiling capabilities to those already present in the code, in order to to
measure performance of the in situ analysis framework. For instance, some results of weak and
strong scalability series measured on 1 to 4 compute nodes of the experimental cluster shannon,
fully subscribed with 16 Learn tasks per node, are presented here in Figure 5. Please note that
more scaling experiments with the MiniAero/Legion setting are presented and discussed in detail
in [PB16, PBH+16].

In the case presented here, each test was run 20 times, in order to capture any performance
variability. As a result, three separate series of timings were retained, corresponding to the the
shortest (“best”), average, (“mean”) and longest (“worst”) in-situ analysis execution speeds. In
particular, these scaling plots now exhibited a surprisingly low worst-case weak scaling plot while,
on the other hand, a rather robust strong scaling in all cases.

While the former finding can be easily explicated by the inherent nature of strong scaling, not
having yet run its course of potential parallel gains as data size increased by a factor of 8, the latter
is more difficult to attribute to a single cause (even though several could be suggested, especially in
relation to the mean and worst cases super-scaling observed with smaller meshes). Further studies
were thus warranted in order to definitely conclude in this regard, hereby confirming the need to
explore other programming paradigms.
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Figure 5. Scaling of Learn tasks on up to 4 nodes: left, weak scal-
ing from a 1283 (top) or 2563 (bottom) grid; right, strong scaling
with a 1283 (top) or 2563 (bottom) grid per task.
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4 Parallel Statistics in Legion: the Legion-SPMD Approach

4.1 Overview of the Legion-SPMD Approach

The aggregation region approach, described in the previous section, presents an elegant solution
that abides by a SPMD implementation while still benefiting from any asynchronous execution.
However there are a few drawbacks to this approach that could potentially be improved upon: it
represents an all-to-one model of collectives where all contributions to a collective are funneled
to one-point (the aggregation region), and the result is not immediately available in the tasks con-
tributing to the collectives but rather to the parent task.

For instance, in Figure 4 the sub-tasks 1, 2, 3 launched during the Learn phase contribute
to the global model, but will not have access to it during their respective lifetimes. The global
model is logically available only in the top-level task at the end of the Learn phase. Moreover, any
Assess phase tasks that use this global model will require a fresh SPMD launch. This fork-join
model may be seen as a “pinching” of the SPMD approach preventing the creation of sub-tasks
with perfect SPMD form, that can run through the entire lifetime of the application. Nearly all in
situ analyses require some form of global communication and most applications themselves might
require frequent collectives, which can make the aggregation region approach incur noticeable
overhead.

Legion and similar systems provide a sequential abstraction. A program consists of a sequence
of tasks, and the system is responsible for finding parallelism that respects the original program
order. Because tasks obey a sequential ordering, they need to be analyzed in order. In Legion, this
currently happens on a single node, leading to a performance bottleneck. In general, if it is intended
to launch N tasks where N is a function of the number of nodes in the machine, the overhead of
the run-time system will be O(N). This bound is inherent given the chosen abstractions and even
a distributed analysis of tasks suffers from this problem. For example, StarPU [AAF+16] follows
an approach where each node independently filters the set of tasks to just those to be executed by
that node. But because every node must still consider all tasks, the overall cost of this approach is
O(N) as in Legion.

A proper solution—which achieves O(1) analysis cost per node—requires abstractions that are
independent of the size of the machine. Legion already provides this via index launches, which
describe a set of tasks to be executed in parallel on the machine, although the current run-time
implementation does not fully take advantage of this. Regent, a compiler for the Legion program-
ming model, can automatically control replicate these index launches to produce long-running
tasks called shards that amortize the cost of this analysis. Critically, the compiler can determine
from the sequence of index launches the required patterns of communication for the application
on a distributed-memory machine, and can automatically generate the appropriate code for that
communication with no additional user input. Regent control replication has been demonstrated
to achieve good scalability to 1024 nodes for a variety of structured and unstructured applications.
An implementation for the Legion run-time itself is also in progress [SLT+17].
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We propose herein an alternative model for collectives that aligns exactly with the SPMD
philosophy, while removing this all-to-one funneling effect. Moreover, the collective result will
be available within each of the SPMD sub-tasks launching the collectives. This model is “MPI-
like” and relies on the binary-tree algorithm that has a log2 (N) scaling on the number of SPMD
elements. In this model the control is passed down from the top-level task to the SPMD sub-tasks
which have access to the global model once it has been properly Derived. The Assess phase can
then happen inside these sub-tasks since the global model will be available locally to each of them.
In other words the sub-tasks in Fig. 4 can persist through the Learn/Derive/Assess phases without
requiring a break for the Derive phase followed by a fresh SPMD launch for the Assess phase.

Figure 6. Pictorial representation of the binary-tree algorithm for
performing an AllReduce collective over 8 SPMD elements.

This model is designed to provide MPI-like functionality, where an AllGather or AllReduce is
called from within each rank, but the result becomes available to every participating rank. Accord-
ingly, each SPMD sub-task first performs the Learn operation on the portion of the data it owns.
It then launches a collectives task from within itself which performs the following sequence of
operations:

• Launch collectives round-tasks, the number of rounds being equal to log2 (N) where N is the
total number of SPMD elements.

• Execute the collectives round-tasks in sequence, each of which involves communication with
exactly one other SPMD element.

• The index of the SPMD element to communicate with in each collectives round-task is also
fully pre-determined from N.

• Each collective round-task involves updating the global model in place and the binary tree
algorithm guarantees that this would be the true global model at the end of the last collectives
round-task.
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The collectives rounds are pictorially represented in Fig. 6 for the case of 8 SPMD elements
performing an AllReduce.

To enable such a functionality we have implemented a light-weight collectives library that
implements the binary-tree algorithm. The library allows any generic application with SPMD tasks
to launch a collectives task from within each SPMD element. The launching of the collectives
round-tasks, their execution in sequence, the communication with the predetermined partner in
each round, and the update of the result in place are all orchestrated using Legion Phase Barriers.
The Phase Barriers were designed to be light-weight synchronization primitives and can be created
in large numbers without incurring much performance overhead. The actual reduction operation
itself is a virtual method that provides flexibility over the type of data being reduced over, and the
type of the reduction operation itself.

To assess the scalability of this approach we have performed weak scaling experiments of a
stand-alone collectives prototype that emulates an AllReduce operation over a skeletal SPMD ap-
plication on Titan, a Cray platform described in §4.3. The prototype code does not have tasks doing
meaningful computations, but it simply performs an index launch of the collectives task over a cer-
tain number of SPMD shards. The collectives task within each shard then launch further sub-tasks
to perform the rounds described above. Each shard is effectively contributing one floating point
number to the AllReduce, and hence the result is also a floating point number. This is therefore
a very conservative experiment that simply exposes the overhead for setting up the phase barriers
and performing the sub-tasks in the designated order. In the setting of an actual application com-
posed of tasks performing meaningful computations, the communication costs for the collectives
rounds and the overhead for ordering the collectives rounds tasks in a sequence will be efficiently
hidden by the Legion run-time. However, our prototype was designed specifically in order to not
hide behind such effects so that scalability of the approach might be assessed in a stringent manner.

Figure 7 shows results of weak scaling experiments of the collectives prototype on Titan. Each
run was performed with one legion process and one SPMD shard task per node on Titan. The
results show that the scalability is reasonably good, close to the ideal scaling line, up to 128 nodes.
However, when reaching 256 nodes a noticeable departure from ideal scaling occurs. Our experi-
ments showed that as the number of nodes increased, the completion time for the collectives varied
dramatically. In order to minimize possible effects due to unfavorable node placements by the
batch system, the experiment was run successively 10 times in one single batch job (while the set
of nodes remained constant), and even then the variation was significant (up to an order of mag-
nitude). This suggests that the experiment is sensitive to network variability. Note that the fastest
recorded time for the 256 nodes case was 0.47 seconds, indicating that these were extremely short
experiments making them very susceptible to network variability. We are currently studying the
scalability of the prototype in a variability-free environment on a dedicated cluster to assess the
weak scalability better.
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Figure 7. Weak scaling of AllReduce collective tasks.

4.2 In Situ Setting with S3D

In order to conduct scalability studies independently of load-balancing issues, we applied the in
situ descriptive statistics engine to simulation results obtained using the massively parallel, com-
pressible DNS code S3D [HSSC05].

The configuration investigated consists of a temporally evolving jet between n-dodecane and
diluted air with XO2 = 0.15 and XN2 = 0.85. The ambient gas temperature is Tamb = 960K, the fuel
temperature is Tfuel = 450K, and the operating pressure is p = 25 bar. The fuel stream is initialized
with a mixture fraction ξ of 0.35: this value of ξ was chosen to be higher than those usually
observed in practical diesel sprays downstream of the evaporation region in order to guarantee
the existence of flow regions containing the most reactive composition at the time of ignition.
The mean velocity of the fuel jet is u j = 21 m/s, the slot half-width is 0.25 mm, and the jet
Reynolds number is Re j = 6600. Reaction rates were computed using a 35 species reduced kinetics
mechanism including both the low- and high-temperature oxidation pathways of n-dodecane.

The full simulation was conducted on a computational grid initially consisting of 1200×
1500×1000 grid points in the stream-wise, transverse and span-wise directions respectively. The
grid spacing is uniform in the stream-wise and span-wise directions and equal to ∆x = 3µm. To
reduce the total grid count, a discretization with a uniform central region and stretched edges was
used in the transverse direction: within the uniform region, the grid spacing is 3 µm. As the jet
expanded along the in-homogeneous direction during its temporal evolution, the uniform central
region was periodically enlarged. At the end of the simulation, the number of grid nodes in the
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transverse direction was 2400. The velocity field was initialized by superposing turbulent fluctua-
tions on top of a hyperbolic tangent mean velocity profile. The fluctuations were generated using
a synthetic homogeneous isotropic turbulence spectrum, and chemical reactions were deactivated
during the initial laminar-turbulence transition of the velocity shear layer.

4.3 Test Platform

The test platform with S3D-Legion is Titan, a Cray massively parallel computational cluster, lo-
cated Oak Ridge National Laboratory and meant to be used by premier science applications. It was
built by Cray with funding mostly from the United States Department of Energy. Titan features
a hybrid architecture comprising 18,688 AMD Opteron central processing units (CPUs) and an
equal number of Nvidia Tesla K20X graphics processing units (GPUs). It has been the first such
platform with demonstrated peak performance above 10PFLOPS, at 17.59PFLOPS [TOP13].

Titan is dedicated to science applications, with a selective process being in place in order to
decide which projects can run on it. It is especially worth noticing that S3D is amongst six such
applications that have been identified, as early as 2011, in order to prepare for exascale-capable
codes.

Because of the hybrid CPU/GPU architecture of Titan, existing science applications that had
been historically developed in a CPU-only context had to undergo substantial changes. As a re-
sult, the version of S3D that was ported to Titan exhibits greater performance than the CPU-only
version.

4.4 Results

Each test was also run 20 times in an attempt to account for performance variability across runs. As
in §3.3, three separate series of timings were retained, corresponding to the the shortest (“best”),
average, (“mean”) and longest (“worst”) in-situ analysis execution speeds for each of the consid-
ered test cases.

On one hand, Table 1 presents the results of a weak scalability (R(p)) experiment for the
descriptive Learn task, scaling up to 128 tasks on as many distinct compute nodes of Titan, with a
constant load of 323 grid points per task.

On the other hand, Tables 2 and 3 show the results of strong scalability (SN(p)) experiments,
also with always a single task per compute node on Titan, with constant global meshes of respective
size 64×128×64 and 256×128×128.

These results are summarized in Figures 8 and 9 for the average scaling series. These reveal
optimal scaling, both weak and strong, across the considered example space. We acknowledge
however that we could not approach the Amdahl limit for strong scaling, as it turned out that
a problem size allowing to approach it for descriptive statistics Learn tasks would be too large
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Table 1. Weak scaling of Learn tasks on Titan: ensemble of 20
runs with a 323 grid per task and a single task per node.

p N(p) best mean worst
ms | R(p) ms | R(p) ms | R(p)

2 65536 2.74 | 1.00 2.79 | 1.00 3.02 | 1.00
4 131072 2.69 | 2.04 2.81 | 1.98 3.73 | 1.62
8 262144 2.69 | 4.07 2.72 | 4.10 2.97 | 4.06

16 524288 2.71 | 8.11 2.83 | 7.89 3.02 | 7.98
32 1048576 2.71 | 16.2 2.76 | 16.1 2.95 | 16.4
64 2097152 2.70 | 32.5 2.75 | 32.5 3.01 | 32.0

128 4194304 2.70 | 65.1 2.73 | 65.4 2.85 | 67.7

Table 2. Strong scaling of Learn task on Titan: ensemble of 20
runs with a 64×128×64 global grid and one task per node.

p N/p best mean worst
ms | SN(p) ms | SN(p) ms | SN(p)

2 262144 21.9 | 1.00 23.7 | 1.00 27.3 | 1.00
4 131072 11.2 | 1.95 11.7 | 2.02 12.4 | 2.20
8 65536 5.42 | 4.04 5.57 | 4.25 5.86 | 4.66

16 32768 2.72 | 8.05 2.78 | 8.53 2.98 | 9.16
32 16384 1.27 | 16.0 1.29 | 17.1 1.42 | 19.2

for the main processing computation. In other words, this finding demonstrates that our in situ
implementation is more scalable than the overall application and therefore does not impact its
scalability.
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Table 3. Strong scaling of Learn tasks on Titan: ensemble of 20
runs with a 256×128×128 global grid and one task per node.

p N/p best mean worst
ms | SN(p) ms | SN(p) ms | SN(p)

8 524288 43.9 | 1.00 46.2 | 1.00 48.5 | 1.00
16 262144 21.9 | 2.00 22.6 | 2.04 24.1 | 2.01
32 131072 11.0 | 3.99 11.5 | 4.02 12.4 | 3.91
64 65536 5.42 | 8.10 5.54 | 8.34 5.71 | 8.49

128 32768 2.70 | 16.3 2.73 | 16.9 2.85 | 17.0
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Figure 8. Weak scaling of descriptive Learn tasks on Titan, aver-
aged over an ensemble of 20 runs with a 323 grid per task, and a
single task per node.
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Figure 9. Strong scaling of descriptive Learn tasks on Titan, av-
eraged over an ensemble of 20 runs, with a 64×128×64 (top) and
256×128×128 (bottom) grid and a single task per node.
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5 Conclusion

In conclusion, the results herein are very promising, and the statistics package is planned for de-
ployment in situ at-scale in upcoming S3D science runs. Moreover, the integration work with
Legion-S3D and the development of the lightweight collectives library can be modeled and di-
rectly leveraged by UDDAP team members at University of Utah, LANL, and Kitware.

Planned future work includes integrating the in situ kernels developed at these other institutions
into a more comprehensive and complex workflow. In particular, we are currently working on in-
tegrating order statistics as another analysis kernel for S3D-Legion, in order to provide scientists
with the ability to derive empirical probability density functions to, in particular, evince outly-
ing results and deviations from models computed by the already integrated descriptive statistics
engine.
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